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Waves which occur on the surface of solids coated with a thin compressible layer and which attenuate 
rapidly with distance from the surface are considered. The absorbing layer is modelled by a non- 
classical houudary condition (11. It is shown that waves cau propagate near the body and are localized 
inside a certain layer whose thickness depends, in particular, on the mechanical properties of the 
coating. 

1. SURFACE WAVES ON A PLANE 

Suprosa the y = 0 plane is coated with a thin absorbing layer, while the space y > 0 is filled with an ideal 
compressible liquid. We will consider acoustic waves propagating near the absorbing layer. 

Outside the layer the pressure in the acoustic wave is described by the following equation 

a2p/at2 = c; (azp I ax2 + a2p I ay2) (1.1) 

The boundary condition on the solid, which models the absorbing coating, has the form [l-4] 

(1.2) 

where c, and c, are the velocity of sound in the absorbing layer and outside it, respectively, p., p,, are 

the mean densities of the liquid in the absorbing layer and outside it, and h, is the mean thickness of the 

layer, If c.=+,, the right-hand side in condition (1.2) must be equated to zero [l]. 
The constant G represents the compressibility of the absorbing layer. If it is identified with the 

acceleration due to gravity, then, when c.+,, condition (1.2) is identical with the boundary condition on 
the free surface of the liquid [2,5]. It is natural to expect that the solutions of (1.1) and (1.2) will be similar 
to gravitational waves on the surface of the liquid. Hence, we will seek solutions which decay expon- 

entially with distance from the surface, i.e. waves of the form 

p = exp[-iwr + i(k,x + kry ) 1. &,’ + k; = m2 / ~0’ 

k,>WlCa, k,2=C02/c~-k,2=(iy)2=-y2, 720 
(1.3) 

Everywhere henceforth the time dependence is chosen in the form exp(-icot). 

Boundary condition (1.2) takes the form 

y=o. -w2+Gy=-c?k,2 
(1.4) 
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and defines the law of &per&n of the surfact waves. It cm be seea that for each frequenq w there is a 
surfam wave of the form (1.3) (ik, =-y), which p~~agate~ along the wall with parameters lc, and yf 
d&ted by the equations 

The parameter y defines the effective thickness of the faym- f in which U;rlrt surface wave is focalized 
1 = l/y. Tbii wave transfer8 energy only alang the absorbing layer, 

The enerl~~ flux density cm be calculated from the formula 

using the liiearized Euler Bquation 

‘I%@ total energy flux though the surfam x = const, tramferred by su& ~lt wave, IS 

(The calculation was carx+ied out for a strip of this plane whoscs width is unity.) 
In partkular, for the boundary condition when CCC, we h&v@ 

2 THl3 NATURAL MODES OF A PLANE WAVBCiUIRE WITH ABSORBING WALLS 
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Since in the modes obtained the wave amplitude falls rapidly (exponentially) in the direction from the 

walls into the waveguide, it is natural to call these modes surface modes. 
To illustrate the results obtained we carried out calculations for the following values of the dimension- 

less parameters 

(c&-,)~ =0.25, p./p,, =OS, h/b =lO. 

In Fig. 1 we show typical curves of the dimensionless frequency a& tc. as a function of the dimension- 

less attenuation &, for a symmetrical mode (curves 1) and an antisymmetrical mode (curves 3) in a 
waveguide with absorbing walls. For comparison we also show similar curves for a surface wave propa- 

gating along a single plane wall (curves 2). The dashed curves correspond to the simplified boundary 

conditions, while the continuous curves correspond to boundary conditions of general form. 
As might have been expected, as the width of the waveguide h increases, its walls cease to affect one 

another and the natural modes of the waveguide become a surface wave (1.3) and (1.4). 
The natural modes obtained above transfer energy along the waveguide walls. The energy flux density 

vector for a surface wave of amplitude A for symmetrical modes, by (2.9), is given by 

For an antisymmetrical mode the quantity ch*(yy) must be replaced by sh*(yy) in the expression 

obtained. 
The total energy flux through a strip of unit width in the x = const plane is given by the equations 

When c.+,, by (2.2) we have 

Q = 2h(l+ “fco2 cth fi / G)x(p,c,)-’ 

For antisymmetrical modes we must replace 2/z by (sh2#-2*)/y and cth$ by thy/t in the expression 
for the total energy flux. 

In addition to natural surface modes in the waveguide with absorbing walls there can also be modes 

that do not attenuate with depth, similar to the natural modes of a classical waveguide. To obtain these we 
will seek solutions of Eq. (1.1) of the form 
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p = exp[-iol + ik&(y) (2.3) 

Just as for surface waves, the dependence on y can be symmetrical: pnsinpy and antisymmetrical: 

p e cosfly. Then, from the boundary conditions (2.1) when c,-+, we obtain 

I 

Gfictg@h), ~h~(1ln,lt/2+rcrr], n=O,l,... 

o 2 = G/h, f3=0 (2.4) 
-G@g(gh), flhE(n//+nn,st+m], n=O,l,... 

Since k,” = w2 /c$ -f3”, we have fi <co/c,, and for each frequency cc the number of waves of the form 
considered is bounded by the straight line w = cop in the (co, B) plane. These modes have been studied in 
detail, and we will therefore not dwell on them here. The dispersion relations for these modes in the plane 
of the dimensionless parameters (e&,/c,, Bh,) are shown in Fig. 2 (curve 1). For comparison we also 

show the dispersion curves for the surface modes of waveguide with absorbing walls (curve 2 is for the 

symmetrical mode and curve 3 is for the antisymmetrical mode). 

3. SURFACE WAVES ON THE OUTSIDE AND INSIDE OF A CYLINDRICAL 
WAVEGUIDE WITH ABSORBING WALLS 

Consider a cylinder of radius R coated on the outside and inside with an absorbing layer and placed in 
an ideal liquid. By analogy with the plane case it is natural to expect that surface waves can propagate 
along the internal and external surface of the cylinder, i.e. the solutions attenuate rapidly with distance 

from the surface. 
The solution of the wave equation in cylindrical coordinates 

i a2p i ap a2p azp 
~~-g~+;d,+~+g+k2p=0, k2 =m2/c; 

will be sought in the form 

p=R(r)exp(-ia~+ik,z+incp), n=O,fl,... 

We obtain 

x~R”+xR’-(x~+~~)R=O, r=yr 

R=R(x)=R(y), y2=k+02/c; 

(3.1) 

(3.2) 

The boundary condition which models the absorbing layer takes the form 
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r=Rcr -~2R(x)-G~R/a~=-c~(n2/r2+k~)R(x) (3.3) 

The simplified boundary condition corresponds to (3.3) with zero right-hand side. 

Waves on the external surface of the cylinder 

Outside the cylinder, Eq. (3.2) has a solution possessing the required attenuation property at infinity, 
R= K,,(y), where K, is the modified Bessel function. From boundary condition (3.3) we obtain the 
dispersion law of the surface waves 

(3.4) 

In this wave energy is transferred only along the surface of the cylinder. By (1.6) for a surface wave 

with amplitude A the energy flux density vector and the total energy flux through a surface z = const are 
given by the equations 

4- -$K;(+ Q=2d2kL +jxK.2(x)dr 
Powy y& 

Waves on the inner surface of the cylinder 

Inside the cylinder Eq. (3.2) has the solution R=Z,(y). The dispersion relation obtained from 

boundary condition (3.3) differs in this case from (3.4) by having the ratio K;(7RC)I K,(yR,) replaced by 

Z;(‘yR,)lZ,(yR,) while in (3.5) one must replace K. by Z,, and integrate between the limits from 0 to 7R,. 
In Fig. 3 we show the results of calculations of the dispersion curves for n = 0 (curves 1 and 2) and 

n = 1 (curves 3 and 4) for R, Ih, = 10. Curves 1 and 3 are the dispersion relations for the external modes 
of the cylinder, and curves 2 and 4 are for the internal modes. Here the dashed curves correspond to the 
simplified boundary condition while the continuous curves correspond to boundary condition of general 
form. 

When R, + 0~ the natural modes of a cyliidrical waveguide become a surface wave (1.3)-(1.5). 

F~3.3. 
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4. SURFACE WAVES IN A CYLINDRICAL LAYER 

Consider the surface waves between coaxial cylinders of radii R_ and R, (R_ CR+) coated with an 
absorbing layer. The simplified boundary conditions have the form 

r=Rf. -02R(yr)iGyR’(yr)=0 (4.1) 

Taking the cases considered above into account, the dependence on r will be sought in the form 

From (4.1) we then obtain two modes of the cylindrical layer 

02=B2/B,f[(B2/B,)2-B3/B,]~ 

BI =a+--_, B2 =-Gy(b_+b+)/2 

B3=W2(c--c+), ~~=~,WGK(YR~) 

b =I,(yR,)K:,(yRI)-IJ,(yR,)K,(yR,) 

ci = ~:(fl*)K(?%) 

(4.2) 

It can be shown that 

For R_ and R+, which approach infinity so that R+ -R_ = cmst, the natural modes of the cylindrical 
layer become natural modes of a plane waveguide. 

Traditional modes, similar to the natural modes (2.3), (2.4) of a plane wave-guide, can also exist 
between the cylinders. 

In Fig. 4 we show characteristic dispersion curves for a cylindrical layer with R-/h, = 10, R+ lh, = 15. 
Curve 1 corresponds to relation (4.2) with the plus sign, curve 2 corresponds to the same relationship with 
a minus sign, and curve 3 corresponds to traditional modes. 

We wish to thank Yu. D. Chashechkin and S. V. Nesterov for useful discussions. 

FIO .4. 
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